

Research on SEAndroid Security Strategy

Xiang Wanga
Information and Educational Technology Center, Southwest Minzu University, Chengdu 610041, China.

awangxiang@swun.edu.cn

Keywords: SEAndroid, Security mechanism, Anomaly detection, Access control, Security policy.

Abstract: As an important part of Android system security mechanism, SEAndroid is directly
related to system security. Due to its open source, programmable software framework, and the
nature of networked devices, Android is vulnerable to smartphone viruses. Android devices are
tightly protected under normal conditions, but an attacker is likely to find weaknesses in a kernel
module or core library to gain maximum access and attack. This paper starts with the system
architecture of Android, analyzes the existing security mechanism and security risks of Android,
and finally gives a security solution for security risks.

1. Introduction
The Android operating system is an open source mobile operating system based on the Linux

kernel. It is continuously led and developed by Google's Open Handheld Alliance (OHA). Android is
now the world's largest operating system. The original Android relied on its Linux-based autonomous
access control (DAC) mechanism to provide security boundaries. The core view of autonomous
access control is based on the concept of user ID and group ID. Users are relatively isolated. Files and
programs have their own owners, that is, users. Users can only obtain the corresponding authorization.
Perform related operations and communication on resource files or processes owned by other users.
The same group ID is a combination of users with related attributes, and specifies that the
corresponding group of users have the right to operate the corresponding resources. However, the
autonomous access control mechanism has significant shortcomings, such as flawed or malicious
applications that can leak sensitive data, and cannot restrict any system daemons or segued programs
that run with root privileges. The SEAndroid security policy directly determines the security status of
the system. Improper configuration will bring serious security problems. For example, if the
application is incorrectly over-granted with unnecessary access rights, it will lead to privilege
promotion (CVE-2015-4640, CVE-2015- 4641) [1-2]. Therefore, it is necessary to analyze and detect
security vulnerabilities in the SEAndroid security policy.

2. Introduction to Android
2.1. Android platform framework

Android is the environment in which applications are executed on mobile devices. The Android
platform framework consists of five parts: The Android software stack is based on the Linux 2.6
kernel, which provides core system services such as security, driver, memory management, process
management, and network protocol stack. The Linux kernel above is the Android native library,
which is a C/C++ library that is called by various system components at the top. These libraries are
merged through the Java Native Call (JNI) implementation within the Android application. The
Android runtime environment includes the Dalvik virtual machine and core library. Dalvik runs.
dex files, a file that is considered to be more concise and memory-saving than Java class files. The
core library is written in the Java language and provides a number of subclasses of the Java 5 SE
package and some Android-specific libraries. The application framework is still written in the Java
language, which is the basis for developers to develop Android. This layer is mainly composed of

2019 2nd International Conference on Information Science and Electronic Technology (ISET 2019)

Published by CSP © 2019 the Authors 81

components directly called by the developer, such as View, Notification Manager, and Activity
Manager. An application is also a program written in the Java language and running on a virtual
machine. The entire Android platform framework is shown in Figure 1.

Figure 1. Android platform framework

2.2. Android application composition
The regular publishing format for Android applications is a digitally signed. apk file package,

similar to the standard Java Jar, which contains all the code and non-code files for the program. One
of the XML files, the Android Manifest file, contains basic information about the application, such
as package name, component description, and permission declaration. An Android application
consists of four types of components (sub-building blocks): activity, service, content provider, and
broadcast receiver. The Activity works in the foreground of the mobile phone screen to
communicate with the user, and the service works without a user interface in the background. The
content provider provides data storage for applications, and the broadcast receiver helps program
components communicate with each other. Each component is independently instantiated and
executed while also interacting with other components, if necessary, by other programs.

3. SEAndroid
SEAndroid access control includes three access control models: type enforcement, role access

control [3], and multi-layer security [4]. In SEAndroid, each subject and object have a security
context, and the format is described as follows: user: role: type: security _ level. Among them, user
represents SEAndroid user, role is for RBAC, type is for TE, and security _ level is for MLS. Since
in SEAndroid, the system only defines one user u and two RBAC roles r and object _ r, TE is the
most important access control model in SEAndroid. This paper also uses the TE model part in
SEAndroid as our main research object.

In TE, each subject (process) and object (such as file, TCP socket) has a type, and the type of the
subject is also a domain. Types that have commonality will be grouped together to form a collection
called attributes, such as the appdomain attribute, which is a collection of application-related
domains. Objects can be divided into different categories according to their nature. Common
categories include files, directories, sockets, and so on. The system defines a set of permission sets
for each category [5].

TE uses the allow rule to control the subject's access to the object, the type _ transition rule to
manage the domain transition and assign the type to the newly generated object. The allow rule
format is: allow domain type: class {permission sets}. The format of the type _ transition rule is:
type _ transition source _ type target _ type: class default _ type.

When the Android system starts, all the policy configuration files are packaged and compiled
into a binary file sepolicy, and the system loads sepolicy into the Linux security module of the
kernel space. The LSM contains an access vector cache and a secure server. When a process subject
accesses the object with some kind of permission, SEAndroid first searches for the access vector in

82

AVC according to the domain and object type of the process. If it exists, it allows access, otherwise
it will continue to search in the security server. If the access vector is present in the secure server,
access is allowed and the access vector is written to AVC, otherwise access will be disabled.

4. Android system security threats
Although the Android system has a strong security mechanism, this is not absolutely secure,

because the source code of the Android system is free and open, and anyone can get it. This allows
the attacker to modify the source code or use the source code. The vulnerability in the system
maliciously attacks the system. Here are a few examples of security threats for Android systems.

4.1. Android malware intrusion
The invasion of malware is the main security threat facing Android. The main types of Android

malware are the following: Rom built-in malware, deducted malware, stealing privacy malware and
tariff traffic consumption malware. These types of malware are generally implemented by making
calls, sending short messages, sending multimedia messages, connecting to the Internet, Wi-Fi
transmission, Bluetooth transmission, and the like.

Figure 2. Android security threat

4.2. Illegal access to the root permissions of the Android system
The root privilege is the highest admin right of the Android system. It is easy to delete or change

the parts of the system by obtaining the root privilege. Therefore, the attacker will use the flash or
software vulnerability to obtain the root privileges of the Android system to modify any file and
data of the system, which is also a major security threat facing the Android system.

4.3. Users lack security awareness
(1) Root mobile phone [6]: Root mobile phone refers to the user obtaining root permission

through third-party software or flashing machine during the use of the mobile phone. Usually, for
security reasons, the manufacturer generates a mobile phone that does not have root privileges after
leaving the factory. Therefore, users will have many restrictions when using it, so many users will
choose the active root mobile phone. The root mobile phone can be easily installed and installed.
Uninstall any mobile app, which is convenient for users to use, but the root phone will bring
security risks, such as system instability, virus intrusion, and privacy data exposure.

(2) App download channel confusion: Unlike Apple's only app store, Android's third-party app
store is arrogant, and compared to Google's official app store Google Play, third-party store

83

management is more confusing and faces bigger Security risks. Most users choose to download
programs in these third-party app stores, which undoubtedly increases security risks.

5. SEAndroid security policy analysis
In this part, we will introduce the specific design implementation of the system's fact collector,

graph generator and path analyzer separately.

5.1. Fact collector
The fact collector collects system state information and SEAndroid security policy configuration

information and declares it as a Prolog fact. The SEAndroid security policy configuration
information includes a security context and a security policy. In the SEAndroid security mechanism,
the subject is generally a process, and the object is generally a file. So, we mainly collect the
security context of files and processes. SEAndroid's security policy is mainly stored in a file
suffixed with te, and all te files will eventually be packaged into a binary file, sepolicy. We use SE
Tools to parse sepolicy into a text file. In all security policies, we focus on the access vector with
the rule name allow and the type _ transition type rule.

Table.1. System fact statement format

Prolog facts Meaning
File _ info (Path, Type, Owner, Group, Uper, Gper, Oper, Setuid, Setgid,

Sticky, Se _ user, Se _ role, Se _ type) File information

User _ info (Username, Uid, Gids) User Info

Process _ network (Pid, Protocol, Port) Network port
information

Process _ running (Pid, Uid, Gid, Program, Se _ user, Se _ role, Domain) Running process
information

Process _ reading (Pid, Filename) Process open file

Se _ domain (Domain) Domain
information

Se _ type (Se _ type) Type
information

Dom _ priv (Domain, Se _ type, Class, OpList) Permission
information

Se _ typetrans (Old _ dom, New _ dom, Se _ type) Type conversion

Se _ attribute (Se _ type, Attribute) Attribute
information

5.2. Graph Generator
The capability dependency graph generator generates a capability dependency graph by inputting

system facts, access control mechanisms, and derivation rules. Definition: Capability dependency
graph: A capability dependency graph is a directed graph (), ,a oG= C C A E∪ , where aC is a set of
capability nodes, oC is a set of conditional nodes, A is a set of action nodes, and E is a set of
directed edges, ()() ()a o aE C C A A C⊆ ∪ × ×

.
There are two types of directed edges of a capability-dependent graph: the edge pointing to the

action node and the edge pointing to the capability node. A directed edge can point to an action
node from a capability node and a conditional node, indicating that the action can only be
performed if these capabilities and conditional preconditions are met. The directed edge can also
point from the action node to the capability node, indicating the new capabilities that are generated
after the action is executed.

84

Figure 3. Example of a capability dependency graph

Dac _ can _ access (Uid, Gid, FileName, Mode): Check whether the user id with the group id of
Uid or Gid under the autonomous access control can perform the Mode operation on the FileName
object.

Dac _ execv (OUid, OGid, NUid, NGid, Program): Check whether the user id with the group id
of OUid and OGid under the autonomous access control can clone a user id and the group id is
NUid and NGid by executing the Progrom program. New process

Se _ domain _ privilege (domain (Domain), type (Type), class (Class), op (Op)): Check whether
the subject whose domain is Domain under the type mandatory access control can have an object of
type and class of Class. Perform an Op operation;

Se _ can _ access (Domain, FileName, Mode): Check whether the principal whose domain is
Domain under the type mandatory access control can perform Mode operation on the file FileName;

Se _ execv (Domain, New Domain, Type): Check whether the principal whose domain is
Domain under the type mandatory access control can clone the new process with the domain New
Domain by executing the object of type;

Privilege _ enhancing (Uid, Gid, Domain, NewUid, NewGid, New Domain): Checks whether the
attacker's ability has improved after a new process is generated. The basis for the check: 1) The
original Uid, Gid is not 0 (root) or 1000 (system) and the user id and group id are changed; 2) the
original domain attribute is not unconfined domain and the domain changes.

5.3. Path Analyzer
The Path Analyzer uses the capability dependency graph as input and uses the depth-first search

algorithm (DFS) to search all attack paths from the initial capability node to the target node. The
algorithm first traverses the initial set of capability nodes, uses each initial capability node vi as an
entry parameter, invokes DFS, and combines the obtained path set Paths with the attack path set
APS to obtain a new APS. In the DFS search process, we have made some restrictions to reduce
unnecessary actions: (1) There is no loop on the attack path; (2) The length of the attack path does
not exceed 10; (3) The intermediate node of the attack path does not contain the target node. We
chose 10 as the threshold for the length of the attack path because, based on our experiments, we
found that most of the attack path lengths in the Android system are 7 and 9. If the threshold is
reduced, a large number of attack paths will be lost, resulting in a higher false negative rate; After
increasing the threshold. The number of newly added attack paths is only a few dozen, and these
new long attack paths are much more laborious for the attacker than the large number of short
attack paths. The intermediate steps are more likely to fail and are easily discovered by the audit
system. Not attractive to attackers. The choice of 10 as the threshold of the attack path length can
meet the performance requirements and the attack surface that the system bears.

85

5.4. Anomaly Detection
The intrusion detection system framework in [7] continuously samples a variety of system

parameter indicators, using machine learning methods to infer the state of the device, such as
whether the collected data is normal (benign) or abnormal (malicious)). The main idea of this
method is to generate system parameter metrics (such as CPU usage, number of packets sent via
Wi-Fi, number of processes running, power consumption, etc.), triggered by known malware. The
system parameter indicators are compared to detect the same point, and then discover new malware
that has not been encountered before. Because of the lack of ready-to-use Android malware, we first
developed four malwares and then evaluated the ability to detect new malware based on known
malware sample detection. We evaluated several combined experiments, including different
classification algorithms and anomaly detection algorithms; different feature selection methods;
different top features were selected. The purpose of the research is to recognize the detection
algorithm, the feature selection method, and how the highest number of features is selected to
distinguish other benign software and malware that are not included in the training group. When
training and testing are performed on different devices, specific features that produce the greatest
detection accuracy should be found. The empirical results show that this proposed framework is
usually effective in detecting malware, especially on Android (accuracy rate 87.4%, false positive
rate 0.126).

6. Conclusion
The Android system is currently the most widely used intelligent terminal operating system, and

its biggest feature is openness. Openness requires that Android must have a robust security
mechanism. Android system layered security mechanism design runs through all levels of Android
system architecture, but there are still security risks. Only Android system continuously improves
its security, users improve security awareness in the process of using intelligent terminals, and
constantly improve Android malware detection. The technology is three-pronged, and it is believed
that the Android system will become more and more secure while bringing convenience to people.

Acknowledgments
This work was supported by Central University Basic Research Business Fee Special Fund "

BYOD security strategy research " Project Number is 2017NZYQN33.
Xiang Wang (1978-), Male, Master, Chengdu, sichuan. Information and Educational Technology

Center Southwest Minzu University, Engineer, Engaged in the study of network operation and
management.

References
[1] Yang Zhonghuang, Liang Shanqiang, Zhan Weixiao. Remote Management of Mobile Devices
Based on SEAndroid. Journal of Xi'an University of Posts and Telecommunications, Vol. 3 (2018)
No.23, p. 17-24.
[2] Huang Jing, Zhao Haiyan, Sun Lingling. Research and Design of Android Terminal System
Security Mechanism. Telecommunications Engineering Technology and Standardization, Vol. 10
(2017) No.15, p. 103-105.
[3] Wen Hanxiang, Li Yujun, Hou Mengshu. Research on Privacy Protection Mechanism Based on
SEAndroid. Computer Science, Vol. 2 (2015) No.17, p. 329-332.
[4] Zhang Weidong, Yang Xiuzhi. Design of Data Security Protection Scheme for Set Top Box
Based on Android Platform. Cable TV Technology, Vol. 4 (2017) No.32, p. 85-89.

86

[5] Yang Zhonghuang, Dong Lunming. Improving the Security of Mobile Systems Based on
SEAndroid Combined with Remote Control. Journal of Xi'an University of Posts and
Telecommunications, Vol. 5 (2016) No.19, p. 1-10.
[6] Xiao Chengwang, Lu Jun, Yu Ligeng. Design and Verification of New Preventive Model for
Android Mobile Rights Raising. Computer and Modernization, Vol. 9 (2017) No.14, p. 56-60.
[7] Song Xinlong, Zheng Dong, Yang Zhonghuang. Mobile Device Management System Based on
AOSP and SELinux. Information Network Security, Vol. 9 (2017) No.35, p. 103-106.

87

	2.1. Android platform framework
	2.2. Android application composition
	4.1. Android malware intrusion
	4.2. Illegal access to the root permissions of the Android system
	4.3. Users lack security awareness
	5.1. Fact collector
	5.2. Graph Generator
	5.3. Path Analyzer
	5.4. Anomaly Detection

